struktex.sty*

Jobst Hoffmann
University of Applied Sciences Aachen, Abt. Jilich
Ginsterweg 1
52428 Jiilich
Federal Republic of Germany

printed on June 4, 2018

Abstract

This article describes the use and implementation of BTEX-package struk-
tex.sty for structured box charts (Nassi-Shneiderman diagrams).

Contents

1 License
2 Preface

3 Hints for maintenance and
installation as well as driver
file creating of this docu-
mentation

4 The User interface
4.1 Specific characters and
text representation . . . .
4.2 Macros for representing
variables, keywords and
other specific details of
programming . . . .. ..
4.3 The Macros for generat-
ing structured box charts

1 License

This package is copyright (© 1995 — 2018 by:

Example file for including

into the documentation 23
Some example files 23
6.1 example fileno1l ... .. 23
6.2 example fileno2 ... .. 24
6.3 example fileno3 . .. .. 25
6.4 Example fileno4 . . . .. 29

Macros for generating the
documentation of the struk-
tex.sty 31

Makefile 36

Style File for easier in-
put while working with
(X)emacs and AUCTEX 41

*This file has version number v2.3c-0-g7d3fc5b, last revised on 2018/06/04, documentation

dated 2018/06/04.



Jobst Hoffmann, c/o University of Applied Sciences Aachen
Aachen, Germany
E-Mail: j.hoffmann_(at)_fh-aachen.de

This program can be redistributed and/or modified under the terms of the
LaTeX Project Public License, distributed from the CTAN archives as file
macros/latex/base/1ppl.txt; either version 1 of the License, or (at your op-
tion) any later version.

2 Preface

StfukTEX has a long history. In development several different programs for version
management were used—rcs, subversion and currently git—, all of which offer
different possibilities to define version numbers. To correlate these different
version numbers correctly in time, the following schema will be used: Version
numbers of the form “v-(d).(d)[(a)]" with (d) as a decimal digit and (a) as
a character, say v-4.1a denote the first development line (rcs). The following
version numbers have the form “v(n)(n)(n)" with (n) as a decimal number,
e.g. v122 (subversion). The current development is under git and uses version
numbers of the form (d).(d)[(a)][(d)]-g(x), for example, v2.1-13-gd28a927; (x)
stands for a hexadecimal number. In general, the age and therefore the sequence
of the versions is

v-(d)-{d)[(a)] < v(m)(n)(n) < v(d).(d)[(a)][-(d)]-g(x)

It is possible to draw structured box charts by this package of macros which
is described herewith. Through this article the package will be always called
SttuglEX. It can generate the most important elements of a structured box chart
like processing blocks, loops, mapping conventions for alternatives etc.!

Since version v-4.1a the mathematical symbols are loaded by AMS-TEX. They
extend the mathematical character set and make other representations of symbols
sets (like N, Z and R for the natural, the integer and the real numbers) possible.
Especially the symbol for the empty set (&) has a more outstanding representation
than the standard symbol (7¢0”’). Therefore it is the better representation in
structured box charts.

Furthermore the idea to set names of variables in italics without generating
the partly unpleasant distances is taken over from oz.sty.

The development of this macro package is still not finished. It was planned to
draw the structured box charts by using the macros of emlines2.sty for eliminating
the constraints given by IATEX. — There are only predefined gradients. — This
is done for the \ifthenelse in the versions v-4.1a and v-4.1b and for \switch
in the version v-4.2a, but not for the systems, which do not support the corre-
sponding \special{...}-commands. Nevertheless it can be attained by using the
corresponding macros of curves.sty. Since version v-8.0a the package pict2e is sup-
ported. This package eliminates the above mentioned constraints by using the
common drivers, so it is recommended to use the respective (see below) option
permanently.

1 Those who don’t like to code the diagrams by hand, can use for example the program Struk-
torizer (http://structorizer.fisch.lu/). By using this program one can draw the diagrams
by mouse and export the result into a INTEX-file.


http://structorizer.fisch.lu/

Just so it is planned to extend structured box charts by comments as they are
used in the book of Futschek ([ ]). This is also implemented in version v-8.0a.
Further plans for future are:

1.
2.

9.
10.

An \otherwise-branch at \switch (done in version v-4.2a).

The reimplementation of the declaration-environment through the list-
environment by | , Abs. 3.3.4] (done in version v-4.5a).

The adaption to IWTEX 2¢ in the sense of packages (done in version v-4.0a).

The improvement of documentation in order to make parts of the algorithm
more understandable.

The independence of struktex.sty of other .sty-files like e.g. JHfMakro.sty
(done in version v-4.5a).

The complete implementation of the macros \pVar, \pKey, \pFonts, \pTrue,
\pFalse and \pBoolValue (done before version v-7.0).

The complete internalization of commands, which only make sense in the
environment struktogramm. Internalization means, that these commands
are only defined in this environment. This is for compatibility of this package
with other packages, e.g. with ifthenelse.sty. The internalization has been
started in version v-4.4a.

The independence of the documentation of other .sty-files like JHfMakro.sty
(done in version v-5.0).

an alternative representation of declarations as proposed by Rico Bolz

Reintroduction of the make-targets dist-src dist-tar and dist-zip.

The current state of the implementation is noted at suitable points.

3

Hints for maintenance and installation as well
as driver file creating of this documentation

The package struktex.sty is belonging to consists of altogether two files:

LIESMICH,

README,
struktex.ins,
struktex.dtx,
struktex.de.pdf und
struktex.en.pdf.

In order to generate on the one hand the documentation and on the other hand
the .sty-file one has to proceed as follows:
First the file struktex.ins will be formatted e.g. with

tex struktex.ins



. This formatting run generates eleven further files. These are first of all the three
.sty-files struktex.sty, strukixf.sty and struktxp.sty, that are used for struktex.sty.
Furthermore these are the two files struktex_test_0.nss and strukdoc.sty, which are
used for the generation of the hereby presented documentation. Then there are
three test files struktex_test_inss, i = 1(2)3 as well as the files struktex.makemake
and struktex.mk (see section 8).

The common procedure to produce the documentation is?
pdflatex struktex.dtx
pdflatex struktex.dtx
makeindex -s gind.ist struktex.idx
pdflatex struktex.dtx

The result of this formatting run is the documentation in form of a .pdf-file, that
can be manipulated the normal way. Further informations about the work with
the integrated documentation one can find in | ] and | ]

To finish the installation, the file struktex.sty should be moved to a
directory, where TEX can find it, in a TDS conforming installation this is
.../tex/latex/struktex/ typical, analogously the documentation has to be
moved to .../doc/latex/struktex/. If the installation process is done auto-
matically (see section 8), the target directories follow that rule.

If one wants to carry out changes, the values of \fileversion, \filedate
and \docdate should be also changed if needed. Furthermore one should take
care that the audit report will be carried on by items in the form of

\changes{(version)}{(date)}{{comment)}

The version number of the particular change is given by (version). The date is
given by (date) and has the form yy/mm/dd. (comment) describes the particu-
lar change. It need not contain more than 64 characters. Therefore commands
should’nt begin with ”\”’ (backslash), but with the ”“”’ (accent).
The following commands make up the driver of the documentation lieing before.

1 (xdriver)

2 % select the formatting language:

3 \expandafter\ifx\csname primarylanguage\endcsname\relax

4 \def\primarylanguage{ngerman}y,

5 \def\secondarylanguage{english}/

6 \else’,

7 \def\secondarylanguage{ngerman}y,

8 \fi

9

10 \documentclass[adpaper, \secondarylanguage, % select the language

11 \primarylanguage] {1txdoc}

12

13 \PassOptionsToPackage{obeyspaces}{url} % must be done before any package is

14 % loaded

15

16 \usepackage{babel} % for switching the documentation language
17 \usepackage{strukdoc} % the style-file for formatting this

18 % documentation

19

2@enerating the documentation is much easier with the make utility, see section 8.



20 \usepackage [pict2e, ¥} <-———--—--—- to produce finer results

21 % visible under xdvi, alternatives are
22 % curves or emlines2 (visible only under
23 % ghostscript), leave out if not

24 % available

25 verification,

26 outer, % <- -—= to set the position of the \ifthenelse
27 % flags to the outer edges

28 debug,

29 ]

30 {struktex}

31 \GetFileInfo{struktex.sty}

32

33 \EnableCrossrefs
34 %\DisableCrossrefs % say \DisableCrossrefs if index is ready
35

36 %\RecordChanges % say \RecordChanges to gather update information

37

38 %\CodelineIndex % say \CodelineIndex to index entry code by line number
39

40 \OnlyDescription % say \OnlyDescription to omit the implementation details
41

42 \MakeShortVerb{\|} % |\fool acts like \verb+\foo+
43
A4 oIt To T Toto ToTo To o To o o To o Fo o Fo o oo Fo o Fo o Fo o fo o Fo o o o o o o oo Fo o To o Yoo Yo to oo oo oo o o o oo oo oo oo Fo o Fo o

45 % to avoid underfull ... messages while formatting two/three columns
46 \hbadness=10000 \vbadness=10000
47

48 \typeout{\string\primarylanguage: \primarylanguage, \string\language
49

50 \def\languageNGerman{10} % depends on language.dat, put
51 % \the\language here
52

53 \begin{document}

54 \makeatletter

55 \@ifundefined{selectlanguageEnglish}{}{\selectlanguage{english}}
56 \makeatother

57 \DocInput{struktex.dtx}

58 \end{document}

59 (/driver)

4 The User interface

: \the\language}

The struktex.sty will be included in a I¥TEX-document like every other .sty-file

by package:
\usepackage [(options)] {struktex}
The following options are available:

1. english, ngerman oder german:

This option defines the language of defined values as \sTrue, default:

english.



\StrukTeX

\nat
\integer
\real
\complex
\emptyset
\MathItalics
\MathNormal

2. emlines, curves, or pict2e:

If you set one of these options, any ascent can be drawn in the structured box
chart. You should use emlines, if you are working with the emTEX-package
for DOS or OS/2 by E. Mattes, else you should use pict2e; curves is in-
cluded just for compatibility. In all cases the required packages (emline2.sty,
curves.sty, or pict2e resp.) will be loaded automatically; the default value is
pict2e.

3. verification:

Only if this option is set, the command \assert is available.

4. nofiller:

Setting this option prohibits setting of & in alternatives.

5. draft, final:

These options serve as usual to diffentiate between the draft and the final
version of a structured box chart (see \sProof0On). While in the draft mode
the user given size of the chart is denoted by the four bullets, the final version
leaves out these markers; the default value is final.

6. debug:
Setting this option produces lines of the form ===> dbg (fext) in the .log-file.

7. outer:

Setting this option changes the position of flags in the ifthenelse-triangles
from the mid to the left and right of the baselines of the triangles.

After loading the .sty-file there are different commands and environments, which
enable the draw of structured box charts.
First of all the logo SttugIpX producing command should be mentioned:

\StrukTeX

So in documentations one can refer to the style option given hereby.

4.1 Specific characters and text representation

Since sets of natural, whole, real and complex numbers (N, Z, R and C) occur often

in the Mathematics Mode they can be reached by the macros \nat, \integer,

\real and \complex. Similarly ”*@”’, which is generated by \emptyset, is the

more remarkable symbol for the empty statement than the standard symbol 70,

Other set symbols like L (for solution space) have to be generated by $\mathbb L$.
One can influence the descriptions of variable names by these macros.

\MathNormal

NewValue = OldV alue + Correction \
NewValue = 0ldValue + Correction

\]

und



\MathItalics

NewValue = OldValue + Correction \L
NewValue = 0ldValue + Correction

\]

4.2 Macros for representing variables, keywords and other
specific details of programming

\pVariable Structured box charts sometimes include code, that has to be programmed
\pVar directly. For achieving a homogenous appearance the mentioned macros have
\pKeyword been defined. They have been collected in a separate package struktxp.sty to be
\pKey able to use them in another context. From version 122 on struktxp.sty is based on
\pComment "url.sty” of Donald Arsenau. This package makes allows to pass verbatim texts as
parameters to other macros. If this verbatim stuff contains blank spaces, which

should be preserved, the user has to execute the command

\PassOptionsToPackage{obeyspaces}{url}
before url.sty is loaded, that is in most of the cases before the command
\usepackage{struktex}

Variable names are set by \pVariable{(VariableName)}. There ( VariableName)
is an identifier of a variable, whereby the underline ”‘_"’, the commercial and ”‘&”’
and the hat ”*~”’ are allowed to be parts of variables:

cANormalVariable \obeylines

\pVariable{cANormalVariable}
\pVariable{c_a_normal_variable}
\pVariable{&iAddressOfAVariable}
pPointerToAVariable”.sContent \pVariable{pPointerToAVariable”.sContent}

c_a_normal_variable

&iAddressOfAVariable

Blanks are considered such, that whole statements can be written. For abbre-
viation it is allowed to use \pVar.
A keyword is set by \pKeyword{(keyword)} respectively. There (keyword) is

a keyword in a programming language, whereby the underline ”*_”’ and the hash

symbol ”‘#”’ are allowed to be parts of keywords. Therewith the following can be

set:

begin \obeylines

program \pKeyword{begin}

) \renewcommand{\pLanguage}{Pascal}

#include \pKeyword{program}
\renewcommand{\pLanguage}{C}
\pKeyword{#include}

\pKeyword is also allowed to be abbreviated by \pKey. With that the source
code


cANormalVariable
c_a_normal_variable
&iAddressOfAVariable
pPointerToAVariable^.sContent
begin
program
#include

\pTrue
\pFalse
\pFonts

\pBoolValue

\sVar
\sKey
\sTrue
\sFalse

\renewcommand{\pLanguage}{Pascal}
\pKey{begin} \pExp{iVar := iVar + 1;} \pKey{end}
generates the following result as output:
begin iVar := iVar + 1; end

In a similar way \pComment is of representation purposes of comments. The
argument is only allowed to consist of characters of the category letter. Characters,
that start a comment, have to be written. \pComment can’t be abbreviated. For
instance

\pExp{a = sqrt(a);} \pComment{// Iteration}

results in the line
a = sqrt(a); // Iteration

Boolean values play an importand role in programming. There are given ade-
quate values by \pTrue and \pFalse: true and false.

The macro \pFonts is used for the choice of fonts for representation of vari-
ables, keywords and comments:

\pFonts{(variablefont)}{{keywordfont)} {{commentfont)}
The default values for the certain fonts are
e (variablefont) as \small\sffamily,
o (keywordfont) as \small\sffamily\bfseries and
e (commentfont) as \small\sffamily\slshape.
With that the above line becomes
a = sqrt(a); // Iteration
Similarly the values of \pTrue and \pFalse can be redefined by the macro
\sBoolValue{(Yes-Value) }{ (No- Value)}
So the lines

\renewcommand{\pLanguage}{Pascal}
\sBoolValue{\textit{yes}}{\textit{no}}
\pFalse = \pKey{not} \pTrue

result in the following:

no= not yes

The macros \sVar and \sKey are the same as the macros pVar and pKey.
Here they are just described for compatibility reasons with former versions of
struktex.sty. The same rule shall apply to the macros \sTrue and \sFalse.


begin
end
not

struktogramm
\sProof0On
\sProofOff
\PositionNSS

\assign

4.3 The Macros for generating structured box charts

The environment

\begin{struktogramm} ((width), (height)) [(titel)]

\end{struktogramm}

generates space for a new box chart. Both the parameters provide the width and
the height of the place, which is reservated for the structured box chart. Lengths
etc. are described in millimeters. In doing so the actual value of \unitlength is
unimportand. At the same time the width corresponds with the real width and
the real height will be adjusted to the demands. If the given height does’nt match
with the real demands, the structured box chart reaches into the surrounding text
or there is empty space respectively. There is a switch \sProofOn, with which
the stated dimensions of the structured box charts is given by four points to make
corrections easier. \sProofOff similarly switches this help off. The title is for
identification of structured box charts, if one wants to refer to this from another
part, e.g. from a second box chart.

The structured box chart environment is based on the picture environment
of IMTEX. The unit of length \unitlength, which is often used in the picture
environment, is not used in structured box charts. The unit of length is fixed by
1 mm for technical reasons. Furthermore all of length specifications have to be
whole numbers. After drawing a structured box chart by Stfugl[pX \unitlength
is of the same quantity as before. But it is redefined within a structured box chart
and need not be changed there.

The main element of a structured box chart is a box, in which an operation is
described. Such a box will be assigned by \assign. The syntax is the following:

\assign[(height)]{(content)},

where the square brackets name an optional element as usual. The width and the
height of the box will be adjusted automatically according to demands. But one
can predefine the height of the box by the optional argument.
The text is normally set centered in the box. If the text is too long for that,

then a (justified) paragraph is set.
Example 1

A simple structured box chart will be generated by the following instruc-

tions:

\sProof0On

\begin{struktogramm}(70,20) [1.\ triall
\assign{Root of $\pi$, calculation and output}

\end{struktogramm}

\sProof0ff

These instructions lead to the following box chart, at which the user
has to provide an appropriate positioning like in the basing \picture
environment. Herewith the positioning is normally done by the quote
environment. But one can also center the structured box chart by the
center environment. The width of the box chart is given by 70mm, the



declaration

\declarationtitle

\description
\descriptionindent
\descriptionwidth
\descriptionsep

height by 12mm. An alternative is given by the centernss environment,
that is described on page 21

At the same time the effect of \sProofOn and \sProof0Off is shown, at
which the too large size of structured box chart has to be taken notice of.

_1. trial
T Root of 7, calculation and output

—e

The meaning of the optional argument will be made clear by the following
example:
Example 2
The height of the box is given by:

\begin{center}
\begin{struktogramm}(70,20)
\assign[20]{Root of $\pi$, calculation and output}
\end{struktogramm}
\end{center}

These instructions lead to the following structured box chart. In doing so
it is to pay attention on the struktogramm environment, which has been
centered by the center environment, at which the width of the structured
box chart is again given by 70mm, but the height by 20mm this time.

Root of 7, calculation and output

The declaration environment is used for the description of variables or inter-
faces respectively. Its syntax is given by

\begin{declaration} [(titel)]

\end{declaration}

The declaration of the title is optional. If the declaration is omitted, the
standard title: ‘Providing Memory Space’ will be generated. If one wants to have
another text, it will be provided globally by \declarationtitle{(title)}. If one
wants to generate a special title for a certain structured box chart, one has to
declare it within square brackets.

Within the declaration environment the descriptions of the variables can be
generated by

\description{{variableName)}{{variableDescription)}

10



\xsize@nss

\tempxx@nss

I
|
\
\
\
I
|
(title) ]
|
\
\

(variable name) (variable description)

\descriptionwidth

\descriptionindent
\descriptionsep

Li,_4 (variable name)

\
\
} ’ (variable description)
\

Figure 1: Construction of a Variable Description

In doing so one has to pay attention on the (variableName), that is not allowed to

content a right square bracket ”’]”’, because this macro has been defined by the

\item macros. Square brackets have to be entered as \lbracket or \rbracket
respectively.

The shape of a description can be controled by three parameters: \descriptionindent,

\descriptionwidth and \descriptionsep. The meaning of the parameters can

be taken from 1 (\xsize@nss and \xin@nss are internal sizes, that are given by
SttugEX). The default values are the following:

\descriptionindent=1.5em
\descriptionwidth=40pt
\descriptionsep=\tabcolsep

The significance of \descriptionwidth is, that a variable name, which is shorter
than \descriptionwidth, gets a description of the same height. Otherwise the
description will be commenced in the next line.
Example 3

First there will be described only one variable.

\begin{struktogramm}(95,20)
\assign
iV
\begin{declaration}

11



\description{\pVar{iVar}}{an \pKey{int} variable, which is
described here just for presentation of the
macro}

\end{declaration}

}
\end{struktogramm}

The corresponding structured box chart is the following, at which one has

to pay attention, that there are no titels generated by the empty square
brackets.

providing memory space:
iVar {an int variable, which is described
here just for presentation of the macro}

Now variables will be specified more precisely:

\begin{struktogramm}(95,50)
\assign{/
\begin{declaration}[Parameter:]
\description{\pVar{iPar}}{an \pKey{int} parameter with the
meaning described here}
\end{declaration}
\begin{declaration}[local Variables:]

\description{\pVar{iVar}}{an \pKey{int} variable with the meaning

described here}
\description{\pVar{dVar}}{a \pKey{double} variable with the
meaning described here}
\end{declaration}
}
\end{struktogramm}

This results in:

Parameter:

iPar {an int parameter with the meaning

described here}
local Variables:

iVar {an int variable with the meaning de-
scribed here}
dVar {a double variable with the meaning

described here}

Finally the global declaration of a titel:

\def\declarationtitle{global variables}
\begin{struktogramm}(95,13)

12


iVar
int
iPar
int
iVar
int
dVar
double

\sub
\return

\while
\whileend
\until
\untilend
\forallin
\forallinend
\forever
\foreverend

\assign{’
\begin{declaration}

\description{\pVar{iVar_g}}{an \pKey{int} variable}
\end{declaration}

}
\end{struktogramm}

This results in the following shape:

global variables
iVar_g {an int variable}

Here one has to notice the local realisation of the \catcode of the un-
derline, which is necessary, if one wants to place an underline into an
argument of macro. Although this local transfer is already realized at
\pVar it doesn't suffice with the technique of macro expanding of TEX.

The mapping conventions for jumps of subprograms and for exits of program
look similar and are drawn by the following instructions:

\sub [(height)1{(text)}
\return [{height)]{{text)}

The parameters mean the same as at \assign. The next example shows how the
mapping conventions are drawn.
Example 4

\begin{struktogramm}(95,20)
\sub{sorting the list}
\return{return of list header}

\end{struktogramm}

These instructions lead to the following structured box chart:

sorting the list

return of list header

For representation of loop constructions there are three instructions available:
\while, \until and \forever. The while loop is a repetition with preceding
condition check (loop with a pre test). The until loop checks the condition at the
end of the loop (loop with a post test). And the forever loop is a neverending
loop, that can be left by \exit.

\while [{width)1{(text)}(structured subbox chart)
\whileend

\until [(width)1{(text)}(structured subbox chart)

13


iVar_g
int

\untilend
\forever [(width)] (structured subbox chart)\foreverend

\exit [{height)] (text)

(width) is the width of frame of the mapping convention and (text) is the con-
ditioning text, that is written inside this frame. If the width is not given, the
thickness of frame depends on the height of text. The text will be written left
adjusted inside the frame. If there is’'nt given any text, there will be a thin frame.

A control structure which nowadays is provided by many programming lan-
guages is a loop known as forall-, for ...in-, or foreach-loop. This kind of
loop can be seen as tail first loop but some people prefer the form of the endless
loop with included text. For this case there is the control structure

\forallin[{(width)]{{text)}(structured subbox chart)\forallinend

Instead of (structured subbox chart) there might be written any instructions of
StfugI X (except \openstrukt and \closestrukt), which build up the box chart
within the \while loop, the \until loop or the \forever loop.

For compatibility with further development of the struktex.sty of J. Dietel
there are the macros \dfr and \dfrend with the same meaning as \forever
and \foreverend.

The two following examples show use of \while and \until macros. \forever
will be shown later.

Example 5

\begin{struktogramm}(95,40)
\assign{\(I \gets 1\)}
\while[8]{\(I < 99\)}

\assign{\(J \gets I+1\)}

\until{\(J < 100\)}
\sub{Swap, if valid: \( ARRAY(I) > ARRAY(J) \)}
\assign{\(J \gets J+1\)}

\untilend

\assign{\(I \gets I+1\)}

\whileend
\end{struktogramm}

These instructions lead to the following structured box chart:

I+ 1

I <99

J—T+1
Swap, if valid: ARRAY (I) > ARRAY(J) |
J—J+1

J < 100
I+ T1+1

Example 6

14



\ifthenelse
\change
\ifend

\begin{struktogramm} (95, 25)
\sub{compute the list \(L\) of the first 100 primes}
\forallin{\ (\forall 1\in L\)}
\assign{print \(1\)}
\forallinend
\end{struktogramm}

These instructions lead to the following structured box chart:

‘ compute the list L of the first 100 primes
vVie L
’ print [

The \exit instruction only makes sense in connection with simple or multiple
branches. Therefore it will be presented after the discussion of branches.

For the representation of alternatives StfugIX provides mapping conventions
for an If-Then-Else-block and a Case-construction for multiple alternatives. Since
in the traditional picture environment of I#TEX only lines of certain gradients
can be drawn, in both cases the user has to specify himself the angle, with which
the necessary slanted lines shall be drawn. (Here is a little bit more ‘handy work
required.)

If however the curves.sty, the emlines2.sty or the pict2e.sty is used, then the
representation of lines with any gradient can be drawn.

The If-Then-Else-command looks like:

\ifthenelse [(height)]{(left angle)}{{right angle)}
{(condition) X (left text)}{(right text)}
(structured subbox chart)
\change
(structured subbox chart)

\ifend

In the case of omitting the optional argument (height) (left angle) and (right angle)
are numbers from 1 to 6. They specify the gradient of both the partitioning lines
of the If-Then-Else-block (large number = small gradient). Larger values are put
on 6, smaller values on 1. The precise characteristics of the gradients can be
taken from the following picture. Thereby \xsize@uss is the width of the actual
structured subbox chart. If the (height) is given, then this value determines the

height of the conditioning rectangle instead of the expression %.

} \xsize@nss {

\xsize@ns
#1 + #2
1

192}

41 .\xsize@nss |

sizelnss | \xsize@nss |
+

#1 + #2 ‘

H*
N

15



(condition) is set in the upper triangle built in the above way. The parameters
(left text) and (right text) are set in the left or right lower triangle respectively.
The conditioning text can be made up in its triangle box. From version v-5.3
on the conditioning text ...% Both the other texts should be short (e.g. yes/no
or true/false), since they can’t be made up and otherwise they stand out from
their triangle box. For obtaining uniformity here the macros \pTrue and \pFalse
should be used. Behind \ifthenelse the instructions for the left ”’structured
subbox chart”’ are written and behind \change the instructions for the right
7’structured subbox chart”’ are written. If these two box charts have not the
same length, then a box with @ will be completioned. The If-Then-Else-element
is finished by \ifend. In the following there are two examples for application.
Example 7

\begin{struktogramm} (95,32)
\ifthenelse[12]{1}{2}
{Flag for Output on Printer set 7}{\sTrue}{\sFalse}
\assign[15]{Output directed to Printer}
\change
\assign{Output on Screen}
\ifend
\end{struktogramm}

These instructions lead to the following structured box chart:

Flag for Output on Printer set ?

true false

Output on Screen

Output  directed
to Printer 1%}

Example 8

\begin{struktogramm}(90,30)
\ifthenelse{3}{4}
{Output on Printer set ?}{\sTrue}{\sFalse}
\assign[15]{Output on Printer diverted}
\change
\assign{Output on Screen}
\ifend
\end{struktogramm}

These instructions lead to the following structured box chart:

3This extension is due to Daniel Hagedorn, whom I have to thank for his work.

16



\case
\switch
\caseend

Output on Printer set ?

true false

Output on Screen

Output on Printer di-
verted 1%}

The Case-Construct has the following syntax:
\case [(height)]1{{angle) H (number of cases)}H (condition)}{ (text of 1.
case)}}
(structured subbox chart)
\switch[(position)]{(text of 2. case)}

(structured subbox chart)

\switch[(position)]{(text of n. case)}
(structured subbox chart)

\caseend

If the (height) is not given, then the partitioning line of the mapping convention of
case gets the gradient given by (angle) (those values mentioned at \ifthenelse).
The text (condition) is set into the upper of the both triangles built by this line.
The proportions are sketched below:

}7 \xsize@nss 4{
T T
#2-\xsizeOnss

1
\xsize@ngs
#1

‘ \xsize@nss‘
#2

The second parameter (number of cases) specifies the number of cases, that have to
be drawn. All structured subbox charts of the certain cases get the same width.
The (text of 1. case) has to be given as a parameter of the \case instruction.
All other cases are introduced by the \switch instruction. Behind the text the
instructions for the proper structured subbox chart of certain case follow. The
last case is finished by \caseend. A mapping convention of case with three cases
is shown in the following example.

Example 9

\begin{struktogramm} (95, 30)
\case{4}{3}{Signum(x)}{-1}
\assign{$z \gets - \frac{1}{x}$}
\switch{0}

17



\assign{Output: Division by 0}
\switch{1}

\assign{$z \gets \frac{1}{x}$}
\caseend

\end{struktogramm}

These instructions lead to the following structured box chart:

-1

Signum(x)

\
: Mi—

2 _% Output: Division | z «

8 |~

by 0

The optional parameter [{height)] can be used if and only if one of the options
“curves”, “emlines2” or “pict2e”, resp. is set; if this is not the case, the structured
chart box may be scrumbled up. The extension of the \switch instruction by
[(height)] results in the following shape with a different gradient of a slanted line,
which now is fixed by the height given by the optional parameter. If the value of
the parameter (angle) is even, a straight line is drawn as before. If the value is

odd, the last case is drawn as a special case as showed below.

Example 10

}7 \xsize@nss 4{

T height)
[ #2

-~

(height)

\xsize@nss ‘

i
\xsize@nss —
1 q

#

e
<
E:

N
[
—

(height)

i

‘\xsize@nss
#2

\begin{struktogramm} (95, 30)

\case[10]{4}{3}{Signum(x) }{-1}
\assign{$z \gets - \frac{1}{x}$}

\switch{0}

\assign{Output: Division by 0}
\switch{1}

\assign{$z \gets \frac{1}{x}$}
\caseend

18




\end{struktogramm}

These instructions lead to the following structured box chart:

Signum(x)
—_—
-1 0 T
z¢ —1 Output: Division | » ¢ 1
by 0

But if the first parameter is odd, then a default branch is drawn; the value for
the default branch should be set flushed right.
Example 11

\begin{struktogramm} (95, 30)
\case[10]{56}{3}{Signum(x) }{-1}
\assign{$z \gets - \frac{1}{x}$}
\switch{1}
\assign{$z \gets \frac{1}{x}$}
\switch{0}
\assign{Output: Division by 0}
\caseend
\end{struktogramm}

These instructions lead to the following structured box chart:

Signum(x)

-1 1 0

2+ -1 P
xr

Output: Division
by 0

8|~

The following example shows, how one can exit a neverending loop by a simple
branch. The example is transferable to a multiple branch without much effort.
Example 12

\begin{struktogramm} (95,40)
\forever
\assign{read character}
\ifthenelse{3}{3}{character = ’E’}

{yHn}
\exit{Jump behind the Loop}
\change
\ifend
\assign{Put out Character}
\foreverend

19



\end{struktogramm}

These instructions lead to the following structured box chart:

read character

character = 'E’

y n

Jump behind the Loop 7]
Put out Character

\inparallel Nowadays multicore processors or even better massive parallel processors are
\task a common tool for executing programs. To use the features of these processors
\inparallelend parallel algorithms should be developed and implemented. The \inparallel com-
mand enables the representation of parallel processing in a program. The syntax

is as follows:

\inparallel [{(height of 15! task)1{(number of
parallel tasks)}{ (description of 15¢ task)}}
\task [(position)]{({description of gnd task)}

\task [{position)]1{{description of nth task)}
\inparallelend

The layout of the box is as follows (the macro parameters #1 and #2 refer to
the parameters of \inparallel):

[ \xsize@nss ‘

T ************************* U Iflm

(height) (descy) (desc.) (descy,)
#1 #2

F\’{Siiﬁﬁ

Note: the tasks are not allowed to get divided by \assign or so. If one
needs some finer description of a task, this should be made outside of the current
structured box chart.

Example 13 (Application of \inparallel)

\begin{struktogramm}(95,40)
\inparallel[20]{3}{start motor}

20



\task{fill in water}

\task{heat water}

\inparallelend
\end{struktogramm}

These instructions produce the following structured box chart:

start motor fill in water heat water

centernss If a structured box chart shall be represented centered, then the environment

\begin{centernss}
(Struktogramm)

\end{centernss}
is used:

\begin{centernss}
\begin{struktogramm} (90, 35)
\ifthenelse{2}{4}
{Is Flag for Output on Printer set?}{\sTrue}{\sFalsel}}
\assign[20]{0utput on Printer diverted}
\change
\assign{Output on Screen}
\ifend
\end{struktogramm}
\end{centernss}

This leads to the following;:

Is Flag for Output on Printer set?

true false
Output on Screen
Output on
Printer diverted 1%}
\CenterNssFile In many cases structured box charts are recorded in particular files such, that

they can be tested seperately, if they are correct, or that they can be used in
other connections. If they should be included centeredly, then one can not use the
following construction:

21



\openstrukt
\closestrukt

\assert

\begin{center}
\input{...}
\end{center}

since this way the whole text in structured box chart would be centered. To
deal with this case in a simple and correct way the macro \CenterNssFile can
be used. It is also defined in the style centernssfile. This requires, that the
file containing the instructions for the structured box chart has the file name
extension .nss. That is why the name of the file, that has to be tied in, must be
stated without extension. If the file struktex-test-0.nss has the shape shown
in paragraph 5, line 2-10 the instruction

\centernssfile{struktex-test-0}

leads to the following shape of the formatted text:

Text
Signum(x)
-1 0 1
y _% Ausgabe: Divi- | 7 « %
sion durch 0

These two macros are only preserved because of compatibility reasons with
previous versions of SttuglpX. Their meaning is the same as \struktogramm and
\endstruktogramm. The syntax is

\openstrukt{(width )}{(height )}
and
\closestrukt.

The macro \assert was introduced to support the verification of algorithms.
It is active only if the option verification is set. It serves the purpose to assert
the value of a variable at one point of the algorithm. The syntax corresponds to
the syntax of \assign:

\assert [(height)] {(assertion)},
It’s usage can be seen from the following:

\begin{struktogramm}(70,20) [Assertions in structured box charts]
\assign{\(a\gets a"2\)}
\assert{\ (a\geO\)}

\end{struktogramm}

\sProof0ff

The resulting structured box chart looks like

22



Assertions in structured box charts

a < a?

=0 )

5 Example file for including into the documenta-
tion

The following lines build up an example file, which is needed for the preparation
of this documentation; there is only an german version.

60 (*examplel)

61 \begin{struktogramm} (95,40) [Text]

62 \case[10]{3}{3}{Signum(x) }{-1}

63 \assign{\(z \gets - \frac{iHx}\)}

64 \switch{0}

65 \assign{Ausgabe: Division durch 0}

66 \switch[r]{1}

67 \assign{\(z \gets \frac{1}{x}\)} \caseend

68 \end{struktogramm}
69 (/examplel)

6 Some example files

6.1 Example file for testing purposes of the macros of struk-
tex.sty without any optional packages

The following lines build up a model file, that can be used for testing the macros.

70 (xexample2)
71 \documentclass[draft]{article}
72 \usepackage{struktex}

73

74 \begin{document}

75

76 \begin{struktogramm} (90, 137)

77 \assign

78 {

79 \begin{declaration}[]

80 \description{\(a, b, c\)}{three variables which are to be sorted}
81 \description{\ (tmp\) }{temporary variable for the circular swap}
82 \end{declaration}

83 }

84 \ifthenelse{1}{2}{\(a\le c\)}{j}{n}

85 \change

86 \assign{\ (tmp\gets a\)}

87 \assign{\(a\gets c\)}

88 \assign{\(c\gets tmp\)}

89 \ifend

90 \ifthenelse{2}{1}{\(a\le b\)}{j}{n}
91 \ifthenelse{1}{1}{\(b\le c\)}{j}{n}

23



92 \change

93 \assign{\ (tmp\gets c\)}
94 \assign{\(c\gets b\)}
95 \assign{\(b\gets tmp\)}
96 \ifend

97 \change

98 \assign{\ (tmp\gets a\)}
99 \assign{\(a\gets b\)}
100 \assign{\ (b\gets tmp\)}

101 \ifend
102 \end{struktogramm}
103

104 \end{document}
105 (/example2)

6.2 Example file for testing purposes of the macros of struk-
tex.sty with the package pict2e.sty

The following lines build up a template file, that can be used for testing the macros.

106 (xexample3)

107 \documentclass{article}

108 \usepackage [pict2e, verification]{struktex}
109

110 \begin{document}

111 \def\StruktBoxHeight{7}

112 %\sProof0On{}

113 \begin{struktogramm} (90,137)

114 \assign¥%

115 {

116 \begin{declaration}[]

117 \description{\(a, b, c\)}{three variables which are to be sorted}
118 \description{\ (tmp\)}{temporary variable for the circular swap}
119 \end{declaration}

120 }

121 \assert [\StruktBoxHeight]{\sTrue}

122 \ifthenelse[\StruktBoxHeight]{1}{2}{\(a\le c\)}{j}{n}

123 \assert [\StruktBoxHeight]{\(a\le c\)}

124 \change

125 \assert [\StruktBoxHeight]{\(a>c\)}

126 \assign[\StruktBoxHeight] {\ (tmp\gets a\)}

127 \assign[\StruktBoxHeight]{\ (a\gets c\)}

128 \assign[\StruktBoxHeight]{\(c\gets tmp\)}

129 \assert [\StruktBoxHeight]{\(a<c\)}

130 \ifend

131 \assert [\StruktBoxHeight]{\(a\le c\)}

132 \ifthenelse[\StruktBoxHeight]{2}{1}{\(a\le b\)}{j}{n}

133 \assert [\StruktBoxHeight]{\ (a\le b \wedge a\le c\)}
134 \ifthenelse[\StruktBoxHeight]{1}{1}{\ (b\le c\)}{j}{n}
135 \assert [\StruktBoxHeight]{\(a\le b \le c\)}

136 \change

137 \assert [\StruktBoxHeight]{\(a \le c<b\)}

138 \assign[\StruktBoxHeight]{\ (tmp\gets c\)}

139 \assign[\StruktBoxHeight]{\ (c\gets b\)}

24



140 \assign[\StruktBoxHeight]{\(b\gets tmp\)}

141 \assert [\StruktBoxHeight]{\ (a\le b<c\)}
142 \ifend

143 \change

144 \assert [\StruktBoxHeight]{\(b < al\le c\)}
145 \assign[\StruktBoxHeight]{\ (tmp\gets a\)}
146 \assign[\StruktBoxHeight]{\(a\gets b\)}

147 \assign[\StruktBoxHeight]{\(b\gets tmp\)}
148 \assert [\StruktBoxHeight]{\ (a<b\le c\)}

149 \ifend

150 \assert [\StruktBoxHeight]{\(a\le b \le c\)}

151 \end{struktogramm}
152

153 \end{document}

154 (/example3)

6.3 Example file for testing the macros of struktxp.sty

The following lines build a sample file, which can be used for testing the macros
of struktxp.sty. For testing one should delete the comment characters before the
line \usepackage [T1]{fontenc}.

155 (xexample4)

156 \documentclass[english] {article}

157

158 \usepackage{babel}

159 \usepackage{struktex}

160

161 \nofiles

162

163 \begin{document}

164

165 \pLanguage{Pascal}

166 \section*{Default values (Pascal):}

167

168 {\obeylines

169 Variables: \pVar{iV_g}, \sVar{zV"}, \pVariable{&i}
170 Keywords: \pKeyword{begin}, \pKey{while}, \sKey{__CPP__}
171 in math mode: \(\pVar{a}+\pVar{iVv_g}\)

172 boolean values: \sTrue, \sFalse, \pTrue, \pFalse
173 }

174

175 \paragraph{After changing the boolean values with}
176 \verb-\pBoolValue{yes}{no}-:

177

178 {\obeylines

179 \pBoolValue{yes}{no}

180 boolean values: \sTrue, \sFalse, \pTrue, \pFalse
181 }

182

183 \paragraph{after changing the fonts with}

184 \verb-\pFonts{\itshape}{\sffamily\bfseries}{}-:
185

186 {\obeylines

25



187 \pFonts{\itshape}{\sffamily\bfseries}{}

188 Variables: \pVar{iV_g}, \sVar{zV"}, \pVariable{&i}

189 Keywords: \pKeyword{begin}, \pKey{while}, \sKey{__CPP__}
190 in math mode: \(\pVar{a}+\pVar{iV_g}\)

191 boolean values: \sTrue, \sFalse, \pTrue, \pFalse

192 }

193

194 \paragraph{after changing the fonts with}

195 \verb-\pFonts{\ttfamily}{\ttfamily\bfseries}{\ttfamily\slshape}-:
196

197 {\obeylines

198 \pFonts{\ttfamily}{\ttfamily\bfseries}{\ttfamily\slshape}
199 Variables: \pVar{iV_g}, \sVar{zV"}, \pVariable{&i}

200 Keywords: \pKeyword{begin}, \pKey{while}, \sKey{__CPP__}
201 in math mode: \(\pVar{a}+\pVar{iV_g}\)

202 boolean values: \sTrue, \sFalse, \pTrue, \pFalse

203 }

204

205 \paragraph{after changing the fonts with}

206 \verb-\pFonts{\itshape}{\bfseries\itshape}{}-:

207

208 {\obeylines

209 \pFonts{\itshape}{\bfseries\itshape}{}

210 Variables: \pVar{iV_g}, \sVar{zV"}, \pVariable{&i}

211 Keywords: \pKeyword{begin}, \pKey{while}, \sKey{__CPP__}
212 in math mode: \(\pVar{a}+\pVar{iV_g}\)

213 boolean values: \sTrue, \sFalse, \pTrue, \pFalse

214

215 \vspace{15pt}

216 Without \textit{italic correction}:

217 M \pVar{M} M \pKey{M} M. \pVar{M}. M. \pKey{M}. M.
218 }

219

220 \pLanguage{C}

221 \pBoolValue{\texttt{WAHR}}{\texttt{FALSCH}}

222 \section*{Default values (C):}

223

224 {\obeylines

225 Variables: \pVar{iV_g}, \sVar{zV"}, \pVariable{&i}

226 Keywords: \pKeyword{begin}, \pKey{while}, \sKey{__CPP__}
227 in math mode: \(\pVar{a}+\pVar{iV_g}\)

228 boolean values: \sTrue, \sFalse, \pTrue, \pFalse

229 }

230

231 \paragraph{After changing the boolean values with}

232 \verb-\pBoolValue{\texttt{yes}}{\texttt{no}}-:

233

234 {\obeylines

235 \pBoolValue{\texttt{yes}}{\texttt{no}}

236 boolean values: \sTrue, \sFalse, \pTrue, \pFalse

237 }

238

239 \paragraph{after changing the fonts with}

240 \verb-\pFonts{\itshape}{\sffamily\bfseries}{}-:

26



241

242 {\obeylines

243 \pFonts{\itshape}{\sffamily\bfseries}{}

244 Variables: \pVar{iV_g}, \sVar{zV"}, \pVariable{&i}

245 Keywords: \pKeyword{begin}, \pKey{while}, \sKey{__CPP__}
246 in math mode: \(\pVar{a}+\pVar{iV_g}\)

247 boolean values: \sTrue, \sFalse, \pTrue, \pFalse

248 }

249

250 \paragraph{after changing the fonts with}

251 \verb-\pFonts{\ttfamily}{\ttfamily\bfseries}{\ttfamily\slshape}-:
252

253 {\obeylines

254 \pFonts{\ttfamily}{\ttfamily\bfseries}{\ttfamily\slshape}
255 Variables: \pVar{iV_g}, \sVar{zV"}, \pVariable{&i}

256 Keywords: \pKeyword{begin}, \pKey{while}, \sKey{__CPP__}
257 in math mode: \(\pVar{a}+\pVar{iV_g}\)

258 boolean values: \sTrue, \sFalse, \pTrue, \pFalse

259 }

260

261 \paragraph{after changing the fonts with}

262 \verb-\pFonts{\itshape}{\bfseries\itshape}{}-:

263

264 {\obeylines

265 \pFonts{\itshape}{\bfseries\itshape}{}

266 Variables: \pVar{iV_g}, \sVar{zV~"}, \pVariable{&i}

267 Keywords: \pKeyword{begin}, \pKey{while}, \sKey{__CPP__}
268 in math mode: \(\pVar{a}+\pVar{iv_g}\)

269 boolean values: \sTrue, \sFalse, \pTrue, \pFalse

270

271 \vspace{15pt}

272 Without \textit{italic correction}:

273 M \pVar{M} M \pKey{M} M. \pVar{M}. M. \pKey{M}. M.
274 }

275

276 \pLanguage{Java}

277 \pBoolValue{\texttt{WAHR}}{\texttt{FALSCH}}

278 \section*{Default values (Java):}

279

280 {\obeylines

281 Variables: \pVar{iV_g}, \sVar{zV~"}, \pVariable{&i}

282 Keywords: \pKeyword{begin}, \pKey{while}, \sKey{__CPP__}
283 in math mode: \(\pVar{a}+\pVar{iV_g}\)

284 boolean values: \sTrue, \sFalse, \pTrue, \pFalse

285 }

286

287 \paragraph{After changing the boolean values with}

288 \verb-\pBoolValue{\texttt{yes}}{\texttt{no}}-:

289

290 {\obeylines

291 \pBoolValue{\texttt{yes}}{\texttt{nol}}

292 boolean values: \sTrue, \sFalse, \pTrue, \pFalse

293 }

294

27



295 \paragraph{after changing the fonts with}

296 \verb-\pFonts{\itshape}{\sffamily\bfseries}{}-:

297

298 {\obeylines

299 \pFonts{\itshape}{\sffamily\bfseries}{}

300 Variables: \pVar{iV_g}, \sVar{zV~}, \pVariable{&i}

301 Keywords: \pKeyword{begin}, \pKey{while}, \sKey{__CPP__}
302 in math mode: \(\pVar{a}+\pVar{iv_g}\)

303 boolean values: \sTrue, \sFalse, \pTrue, \pFalse

304 }

305

306 \paragraph{after changing the fonts with}

307 \verb-\pFonts{\ttfamily}{\ttfamily\bfseries}{\ttfamily\slshape}-:
308

309 {\obeylines

310 \pFonts{\ttfamily}{\ttfamily\bfseries}{\ttfamily\slshape}
311 Variables: \pVar{iV_g}, \sVar{zV~}, \pVariable{&i}

312 Keywords: \pKeyword{begin}, \pKey{while}, \sKey{__CPP__}
313 in math mode: \(\pVar{a}+\pVar{iv_g}\)

314 boolean values: \sTrue, \sFalse, \pTrue, \pFalse

315 }

316

317 \paragraph{after changing the fonts with}

318 \verb-\pFonts{\itshape}{\bfseries\itshape}{}-:

319

320 {\obeylines

321 \pFonts{\itshape}{\bfseries\itshape}{}

322 Variables: \pVar{iV_g}, \sVar{zV"}, \pVariable{&i}

323 Keywords: \pKeyword{begin}, \pKey{while}, \sKey{__CPP__}
324 in math mode: \(\pVar{a}+\pVar{iVv_g}\)

325 boolean values: \sTrue, \sFalse, \pTrue, \pFalse

326

327 \vspace{15pt}

328 Without \textit{italic correction}:

329 M \pVar{M} M \pKey{M} M. \pVar{M}. M. \pKey{M}. M.
330 }

331

332 \pLanguage{Python}

333 \pBoolValue{\texttt{WAHR}}{\texttt{FALSCH}}

334 \section*{Default values (Python):}

335

336 {\obeylines

337 Variables: \pVar{iV_g}, \sVar{zV"}, \pVariable{&i}

338 Keywords: \pKeyword{begin}, \pKey{while}, \sKey{__CPP__}
339 in math mode: \(\pVar{a}+\pVar{iVv_g}\)

340 boolean values: \sTrue, \sFalse, \pTrue, \pFalse

341 }

342

343 \paragraph{After changing the boolean values with}

344 \verb-\pBoolValue{\texttt{yes}}{\texttt{no}}-:

345

346 {\obeylines

347 \pBoolValue{\texttt{yes}}{\texttt{no}}

348 boolean values: \sTrue, \sFalse, \pTrue, \pFalse

28



349 }

350

351 \paragraph{after changing the fonts with}

352 \verb-\pFonts{\itshape}{\sffamily\bfseries}{}-:

353

354 {\obeylines

355 \pFonts{\itshape}{\sffamily\bfseries}{}

356 Variables: \pVar{iV_gl}, \sVar{zV"}, \pVariable{&i}

357 Keywords: \pKeyword{begin}, \pKey{while}, \sKey{__CPP__}
358 in math mode: \(\pVar{a}+\pVar{iv_g}\)

359 boolean values: \sTrue, \sFalse, \pTrue, \pFalse

360 }

361

362 \paragraph{after changing the fonts with}

363 \verb-\pFonts{\ttfamily}{\ttfamily\bfseries}{\ttfamily\slshapel}-:
364

365 {\obeylines

366 \pFonts{\ttfamily}{\ttfamily\bfseries}{\ttfamily\slshape}
367 Variables: \pVar{iV_g}, \sVar{zV"}, \pVariable{&i}

368 Keywords: \pKeyword{begin}, \pKey{while}, \sKey{__CPP__}
369 in math mode: \(\pVar{a}+\pVar{iVv_g}\)

370 boolean values: \sTrue, \sFalse, \pTrue, \pFalse

371 }

372

373 \paragraph{after changing the fonts with}

374 \verb-\pFonts{\itshape}{\bfseries\itshape}{}-:

375

376 {\obeylines

377 \pFonts{\itshape}{\bfseries\itshape}{}

378 Variables: \pVar{iV_g}, \sVar{zV"}, \pVariable{&i}

379 Keywords: \pKeyword{begin}, \pKey{while}, \sKey{__CPP__}
380 in math mode: \(\pVar{a}+\pVar{iV_g}\)

381 boolean values: \sTrue, \sFalse, \pTrue, \pFalse

382

383 \vspace{15pt}

384 Without \textit{italic correction}:

385 M \pVar{M} M \pKey{M} M. \pVar{M}. M. \pKey{M}. M.
386 }

387

388 \end{document}

389 %%

390 %% End of file ‘struktex-test-2.tex’.

391 (/exampled)

6.4 Example file for testing the macros of struktxp.sty

392 (xexampleb)

393 \documentclass{article}

394

395 \usepackage{struktxp, struktxf}
396

397 \makeatletter

398 \newlength{\fdesc@len}

399 \newcommand{\fdesc@label}[1]%

29



400 {%
401 \settowidth{\fdesc@len}{{\fdesc@font #1}}V,

402 \advance\hsize by -2em

403